Visible-to-THz near-field nanoscopy

Hillenbrand1,2, Y. Abate3, M.K. Liu4,5, X. Chen4,6, D.N. Basov6 1 CIC nanoGUNE BRTA and Department of Electricity and Electronics at UPV/EHU, 20018 Donostia-San Sebastián, Spain. 2 Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain 3 Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451, USA. 4 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA 5 National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA. 6 Department of Physics, Columbia University, New York NY 10027, USA r.hillenbrand@nanogune.eu, yohannes.abate@uga.edu, mengkun.liu@stonybrook.edu
Nature Reviews Materials, 2025 (accepted)

Abstract

Optical microscopy plays a significant role in research, development, and quality control across a wide range of scientific, technological, and medical fields. However, diffraction limits the spatial resolution of conventional optical instruments to about half the illumination wavelength. A technique that surpasses the diffraction limit in the wide spectral range between visible and terahertz frequencies is scattering-type scanning near-field optical microscopy (s-SNOM). The basis of s-SNOM is an atomic force microscope (AFM), where the AFM-tip is illuminated with light from the visible to THz spectral range. By recording the elastically tip-scattered light while scanning the sample below the tip, s-SNOM yields near-field optical images with a remarkable resolution of 10 nm, simultaneously with the standard AFM topography image. This resolution is independent of the illumination wavelength, rendering s-SNOM a versatile nanoimaging and nanospectroscopy technique for fundamental and applied studies of materials, structures, and phenomena. This review presents an overview of the fundamental principles governing the measurement and interpretation of near-field contrasts and discusses key applications of s-SNOM. We also showcase emerging developments, enabling s-SNOM to operate under various environmental conditions, including cryogenic temperatures, electric and magnetic fields, electrical currents, strain, and the samples being immersed into liquids. All these recent developments broaden the applicability of s-SNOMs for exploring fundamental solid-state and quantum phenomena, biological matter, catalytic reactions, and more.

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: I. Die Construction von Mikroskopen auf Grund der Theo rie. Arch. für mikroskopische Anatomie 9, 413–418 (1873).
  2. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
  3. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Ann. Rev. Biochem. 78, 993–1016 (2009).
  4. Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).
  5. Synge, E. H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Lond. Edinburgh Dublin Phil os. Mag. J. Sci. 6, 356–362 (1928).
  6. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).
  7. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).
  8. Lewis, A., Isaacson, M., Harootunian, A. & Muray, A. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13, 227–231 (1984).
  9. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995).
  10. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).
  11. Bachelot, R., Gleyzes, P. & Boccara, A. C. Apertureless near field optical microscopy by local perturbation of a diffraction spot. Ultramicroscopy 61, 111–116 (1995).
  12. Kawata, S., Inouye, Y. & Sugiura, T. Near-field scanning optical microscope with a laser trapped probe. Jpn. J. Appl. Phys. 33, L1725–L1727 (19 94).
  13. Keilmann, F., Van Der Weide, D. W., Eickelkamp, T., Merz, R. & Stöckle, D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt. Commun. 129, 15–18 (1996).
  14. Wurtz, G., Bachelot, R. & Royer, P. Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy. EPJ A ppl. Phys. 5, 269–275 (1999).
  15. Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (20 00). This paper introduced the point-dipole model of scattering-type scanning near-field optical microscopy.
  16. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000). This paper introduced amplitude-resolved and phase-resolved interferometric detection of the tip-scattered light combined with higher-harmonic signal de-modulation, as well as the expression s-SNOM.
  17. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 7 87 (2004).
  18. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).
  19. Khatib, O., Bechtel, H. A., Martin, M. C., Raschke, M. B. & Carr, G. L. Far infrared synchrotron near-field nanoimaging and nanospectroscopy. ACS Photon. 5, 2773–2779 (2018).
  20. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019). T his work reviews the recent progress of scattering-type scanning near-field optical microscopy (s-SNOM), serving as a good overview of t he s-SNOM technique and their applications in condensed matter research.
  21. Barcelos, I. D. et al. Probing polaritons in 2D materials with synchrotron infrared nanospectroscopy. Adv. Opt. Mater. 8, 1901091 (2020).
  22. Cocker, T. L., Jelic, V., Hillenbrand, R. & Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).
  23. Choi, B., Jeong, G., Shin, H. H. & Kim, Z. H. Molecular vibrational imaging at nanoscale. J. Chem. Phys. 156, 160902 (2022).
  24. Muller, E. A., Pollard, B. & Raschke, M. B. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length sc ales. J. Phys. Chem. Lett. 6, 1275–1284 (2015).
  25. Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Surf. Sci. Rep. 75, 100493 (2020).
  26. Guo, X. et al. Terahertz nanoscopy: advances, challenges, and the road ahead. Appl. Phys. Rev. 11, 021306 (2024).
  27. Novotny, L. From near-field optics to optical antennas. Phys. Today 64, 47–52 (2011).
  28. Novotny, L. & Hecht, B. Principles of Nano-Optics ISBN 9781107005 (Cambridge Univ. Press, 2009).
  29. Labardi, M., Patanè, S. & Allegrini, M. Artifact-free near-field optical imaging by apertureless microscopy. Appl. Phys. Lett. 77, 621–623 (2000).
  30. Mooshammer, F. et al. Quantifying nanoscale electromagnetic fields in near-field microscopy by Fourier demodulation analysis. ACS Photon. 7, 344–351 (2020).
  31. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007). This paper introduced and described the finite-dipole model of scattering-type scanning near-field optical microscopy and provided a corrected version of the point dipole model.
  32. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2 006). This paper introduced scattering-type scanning near-field optical microscopy with pseudo-heterodyne detection combined with high er-harmonic signal demodulation.
  33. Hillenbrand, R., Knoll, B. & Keilmann, F. Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 202, 77–83 (2001).
  34. Gomez, L. et al. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. J. Opt. Soc. Am. B 23, 823 (2006).
  35. Stiegler, J. M. et al. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 138 7 (2010).
  36. Brehm, M., Taubner, T., Hillenbrand, R. & Keilmann, F. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resoluti on. Nano Lett. 6, 1307–1310 (2006).
  37. Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 45404 (2011).
  38. Pollard, B., Muller, E. A., Hinrichs, K. & Raschke, M. B. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupl ing and dynamics. Nat. Commun. 5, 3587 (2014).
  39. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Aca d. Sci. USA 111, 7191–7196 (2014). This work demonstrated nano-FTIR spectroscopy of semiconductor, biomineral and protein nanostruc tures using synchrotron radiation.
  40. Hillenbrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S. & Aizpurua, J. Coherent imaging of nanoscale plasmon patterns with a carbon nanot ube optical probe. Appl. Phys. Lett. 83, 368–370 (2003).
  41. Esteban, R. et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008). This work introduce d s-polarized illumination for minimally perturbed mapping of the near-field distribution in nanoresonators.
  42. Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).
  43. Govyadinov, A. A., Amenabar, I., Huth, F., Scott Carney, P. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectr ic function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).
  44. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973 (2012). This paper demonstrated nano-FTIR spectroscopy of molecular vibrations and their correlation with conventional FTIR absorption spectra.
  45. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159 (2002). This wor k demonstrated polariton-resonant near-field interaction in scattering-type scanning near-field optical microscopy.
  46. Taubner, T., Hillenbrand, R. & Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Ap pl. Phys. Lett. 85, 5064–5066 (2004).
  47. Mester, L., Govyadinov, A. A. & Hillenbrand, R. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanopho tonics 11, 377–390 (2022).
  48. Aizpurua, J., Taubner, T., de Abajo, F. J. G., Brehm, M. & Hillenbrand, R. Substrate-enhanced infrared near-field spectroscopy. Opt. Express 16, 1529–1545 (2008).
  49. Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).
  50. Wirth, K. G. et al. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photon. 8, 41 8–423 (2021).
  51. Kaltenecker, K. J., Gölz, T., Bau, E. & Keilmann, F. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in w ater. Sci. Rep. 11, 21860 (2021). This paper demonstrated infrared scattering-type scanning near-field optical microscopy and nano-FTIR spectroscopy of water-suspended living cells through the 10 nm thick SiN membrane of a liquid cell.
  52. McLeod, A. S. et al. Nano-imaging of strain-tuned stripe textures in a Mott crystal. npj Quant. Mater. 6, 46 (2021).
  53. Malovichko, I., Govyadinov, A., Huth, F. & Diem, M. Method for referencing a near-field measurement with drift and fluctuation correctio n. EP3940393A1 (2022).
  54. Mastel, S., Govyadinov, A. A., de Oliveira, T. V. A. G., Amenabar, I. & Hillenbrand, R. Nanoscale-resolved chemical identification of thin organi c films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl. Phys. Lett. 106, 023113 (2015).
  55. Heberle, J. & Pfitzner, E. Infrared scattering-type scanning near-field optical microscopy of biomembranes in water. J. Phys. Chem. Lett. 11, 818 3–8188 (2020).
  56. Man, T. et al. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commu n. 13, 305 (2022).
  57. Niehues, I. et al. Identification of weak molecular absorption in single-wavelength s-SNOM images. Opt. Express 31, 7012–7022 (2023).
  58. Paul, S. et al. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun . Chem. 6, 163 (2023).
  59. Raschke, M. B. & Lienau, C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83, 508 9–5091 (2003).
  60. Hillenbrand, R. & Keilmann, F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25–27 (2002).
  61. Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372 (2018). 62. Chen, X. et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photon. 7, 687–694 (2020).
  62. Bijeon, J. L., Adam, P. M., Barchiesi, D. & Royer, P. Definition of a simple resolution criterion in an apertureless scanning near-field optical micr oscope (A-SNOM): contribution of the tip vibration and lock-in detection. EPJ Appl. Phys. 26, 45–52 (2004).
  63. Krutokhvostov, R. et al. Enhanced resolution in subsurface near-field optical microscopy. Opt. Express 20, 593–600 (2012).
  64. Walford, J. N. et al. Influence of tip modulation on image formation in scanning near-field optical microscopy. J. Appl. Phys. 89, 5159–5169 (200 1).
  65. Esteban, R., Vogelgesang, R. & Kern, K. Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast. Opt. Express 17, 2518–2529 (2009).
  66. Nishida, J. et al. Sub-tip-radius near-field interactions in nano-FTIR vibrational spectroscopy on single proteins. Nano Lett. 24, 836–843 (2024).
  67. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279 (2019).
  68. Taubner, T., Keilmann, F. & Hillenbrand, R. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Expre ss 13, 8893 (2005).
  69. Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).
  70. Moon, K. et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 15, 549–552 (2015).
  71. Jacob, R. et al. Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. Nano Lett. 12, 4336–4340 (2012).
  72. Raschke, M. B. et al. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. ChemPhys Chem 6, 2197–2203 (2005).
  73. Govyadinov, A. A. et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 8, 6911–6 921 (2014).
  74. Engelhardt, A. P., Hauer, B. & Taubner, T. Visibility of weak contrasts in subsurface scattering near-field microscopy. Ultramicroscopy 126, 40–4 3 (2013).
  75. Mooshammer, F. et al. Nanoscale near-field tomography of surface states on (Bi Sb ) Te . Nano Lett. 18, 7515–7523 (2018).
  76. Sun, J., Schotland, J. C., Hillenbrand, R. & Carney, P. S. Nanoscale optical tomography using volume-scanning near-field microscopy. Appl. Phy s. Lett. 95, 121108 (2009).
  77. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014). This work dem onstrated time-resolved multi-terahertz nanospectroscopy using electro-optic sampling.
  78. Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancemen t in a scanning nanogap. Phys. Rev. Lett. 97, 60801 (2006).
  79. Mattis Hoffmann, J., Hauer, B. & Taubner, T. Antenna-enhanced infrared near-field nanospectroscopy of a polymer. Appl. Phys. Lett. 101, 19310 5 (2012).
  80. von Ribbeck, H.-G. et al. Spectroscopic THz near-field microscope. Opt. Express 16, 3430–3438 (2008).
  81. Siday, T., Hale, L. L., Hermans, R. I. & Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photon. 7, 596–601 (2020).
  82. Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 17, 6526–6533 (2017).
  83. Moon, Y. et al. Reference-free self-calibrating tip-based scattering-type THz near-field microscopy. AIP Adv. 13, 065211 (2023).
  84. Pistore, V. et al. Near-field probes for sensitive detectorless near-field nanoscopy in the 2.0–4.6 THz range. Appl. Phys. Lett. 124, 221105 (2024).
  85. Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).
  86. Deutsch, B., Hillenbrand, R. & Novotny, L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt. Express 16, 494–5 01 (2008).
  87. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).
  88. Berweger, S. et al. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135, 18292–18295 (2013).
  89. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconducto r nanodevices. Nano Lett. 8, 3766–3770 (2008). This work demonstrated terahertz scattering-type scanning near-field optical microscopy w ith a spatial resolution below 100 nm.
  90. Thomas, L. et al. Imaging of THz photonic modes by scattering scanning near-field optical microscopy. ACS Appl. Mater. Interfaces 14, 32608–3 2617 (2022).
  91. Dean, P. et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 108, 091113 (20 16).
  92. Giordano, M. C. et al. Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 26, 18423–18435 (2018). 94. Liewald, C. et al. All-electronic terahertz nanoscopy. Optica 5, 159 (2018).
  93. Kehr, S. C. et al. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100, 256 403 (2008).
  94. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).
  95. Kuschewski, F. et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 108, 113102 (2016).
  96. Hegenbarth, R. et al. High-power femtosecond mid-IR sources for s-SNOM applications. J. Opt. 16, 094003 (2014).
  97. Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).
  98. Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
  99. Karst, J. et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Sci. Adv. 6, eaaz0566 (2020). 102. Beddoe, M. et al. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: a proof-of-principle study. Acta Biomater. 168, 309–322 (2023).
  100. Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi Se . Nat. Commun. 13, 1374 (2022).
  101. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020).
  102. Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi Se and Bi Te Se topological insulators by near-field terahertz nanosc opy. Nat. Commun. 12, 6672 (2021).
  103. Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (202 3).
  104. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO interface. Nano Lett. 11, 4701–4705 (2011).
  105. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).
  106. Yoxall, E., Schnell, M., Mastel, S. & Hillenbrand, R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantu m cascade laser. Opt. Express 23, 13358–13369 (2015).
  107. Barnett, J. et al. Mid-infrared near-field fingerprint spectroscopy of the 2D electron gas in LaAlO3/SrTiO3at low temperatures. Preprint at https://doi.org/10.48550/arXiv.2311.07354 (2023).
  108. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 112 22–11233 (2006).
  109. Amarie, S., Ganz, T. & Keilmann, F. Mid-infrared near-field spectroscopy. Opt. Express 17, 21794–21801 (2009).
  110. Xu, X. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer to ward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012). This paper demonstrated nano-FTIR spectroscopy of molecular monolayers.
  111. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352 (2011).
  112. Németh, G., Bechtel, H. A. & Borondics, F. Origins and consequences of asymmetric nano-FTIR interferograms. Opt. Express 32, 15280 (202 4).
  113. Larson, J. M., Bechtel, H. A. & Kostecki, R. Detection and signal processing for near-field nanoscale Fourier transform infrared spectroscopy. A dv. Funct. Mater. n/a, 2406643 (2024).
  114. Wehmeier, L. et al. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photon. 10, 4329–4339 (2023).
  115. Peragut, F., Brubach, J.-B., Roy, P. & De Wilde, Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. App l. Phys. Lett. 104, 251118 (2014).
  116. Hermann, P. et al. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 2 1, 2913–2919 (2013).
  117. Lahneman, D. J. et al. Broadband near-field infrared spectroscopy with a high temperature plasma light source. Opt. Express 25, 20421–20430 (2017).
  118. Wagner, M. et al. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photon. 5, 1467–1475 (2018).
  119. Santos, T. M. et al. Synchrotron infrared nanospectroscopy in fourth-generation storage rings. J. Synchrotron Radiat. 31, 547–556 (2024).
  120. Amenabar, I. et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commu n. 8, 14402 (2017).
  121. Schnell, M., Goikoetxea, M., Amenabar, I., Carney, P. S. & Hillenbrand, R. Rapid infrared spectroscopic nanoimaging with nano-FTIR holograp hy. ACS Photon. 7, 2878 (2020).
  122. Fu, M. et al. Accelerated nano-optical imaging through sparse sampling. Nano Lett. 24, 2149–2156 (2024).
  123. Johnson, S. C. et al. Infrared nanospectroscopic imaging in the rotating frame. Optica 6, 424–429 (2019).
  124. Labouesse, S., Johnson, S. C., Bechtel, H. A., Raschke, M. B. & Piestun, R. Smart scattering scanning near-field optical microscopy. ACS Photo n. 7, 3346–3352 (2020).
  125. Kästner, B. et al. Compressed sensing FTIR nano-spectroscopy and nano-imaging. Opt. Express 26, 18115–18124 (2018).
  126. Koch, M., Mittleman, D. M., Ornik, J. & Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 3, 48 (2023).
  127. Chen, H.-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).
  128. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (201 8).
  129. Moon, K. et al. Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivit y. Sci. Rep. 9, 16915 (2019).
  130. Aghamiri, N. A. et al. Hyperspectral time-domain terahertz nano-imaging. Opt. Express 27, 24231 (2019).
  131. Tranca, D. E., Stanciu, S. G., Hristu, R., Latterini, L. & Stanciu, G. A. Surface optical characterization at nanoscale using phasor representation of data acquired by scattering scanning near-field optical microscopy. Appl. Surf. Sci. 509, 145347 (2020).
  132. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). In this work, scattering-type scanning ne ar-field optical microscopy was used to visualize the frequency-dependent propagation of graphene plasmons, as well as the tuning of re sonant localized modes by electrical gating.
  133. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82 (2012). In this work, scattering-type scann ing near-field optical microscopy was employed to image propagating graphene plasmons and to visualize how their wavelengths can be tuned by electrical gating.
  134. Shi, Z. et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photon. 9, 515–519 (2015).
  135. Zhou, Y. et al. Tunable low loss 1D surface plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).
  136. Shi, Z. et al. Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2 015).
  137. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). In this wor k, scattering-type scanning near-field optical microscopy was used to image out-of-plane hyperbolic phonon polaritons in van der Waals materials.
  138. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).
  139. Mancini, A. et al. Near-field retrieval of the surface phonon polariton dispersion in free-standing silicon carbide thin films. ACS Photon. 9, 369 6–3704 (2022).
  140. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).
  141. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). In this work, sc attering-type scanning near-field optical microscopy was used to visualize in real space in-plane hyperbolic phonon polaritons in a natur al van der Waals crystal.
  142. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).
  143. Hu, F. et al. Imaging exciton–polariton transport in MoSe waveguides. Nat. Photon. 11, 356–360 (2017).
  144. Hu, D. et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging. Nat. Commun. 8, 1471 (2017).
  145. Walla, F. et al. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with an on-rotationally-symmetric probe tip. Nanophotonics 7, 269–276 (2018).
  146. Kaltenecker, K. J. et al. Mono-crystalline gold platelets: a high-quality platform for surface plasmon polaritons. Nanophotonics 9, 509–522 (202 0).
  147. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).
  148. Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).
  149. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228 (2017).
  150. Hauer, B. et al. Exploiting phonon-resonant near-field interaction for the nanoscale investigation of extended defects. Adv. Funct. Mater. 30, 190 7357 (2020).
  151. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821–825 (2013).
  152. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 11 3, 55502 (2014).
  153. Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).
  154. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
  155. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).
  156. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO from near- and far-field correlative studies. Ad v. Mater. 32, 1908176 (2020).
  157. Lyu, B. et al. Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride. Nano Lett. 19, 1982 (2019).
  158. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).
  159. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).
  160. Yu, S. J. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 16, 302 7–3035 (2022).
  161. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).
  162. Conrads, L., Schüler, L., Wirth, K. G., Wuttig, M. & Taubner, T. Direct programming of confined surface phonon polariton resonators with the p lasmonic phase-change material In SbTe . Nat. Commun. 15, 3472 (2024).
  163. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2 017).
  164. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674 (2015).
  165. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. L ett. 87, 081103 (2005).
  166. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). This work investigated graphene plasmons at cryog enic temperatures down to 60 K.
  167. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
  168. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).
  169. Barnett, J. et al. Investigation of low-confinement surface phonon polariton launching on SiC and SrTiO using scanning near-field optical micr oscopy. Appl. Phys. Lett. 120, 211107 (2022).
  170. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
  171. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).
  172. Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).
  173. Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).
  174. Zenin, V. A. et al. Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett. 15, 814 8–8154 (2015).
  175. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–13 73 (2014).
  176. Andryieuski, A. et al. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14, 3925–3929 (2014).
  177. Sarriugarte, P., Schnell, M., Chuvilin, A. & Hillenbrand, R. Polarization-resolved near-field characterization of nanoscale infrared modes in tran smission lines fabricated by gallium and helium ion beam milling. ACS Photon. 1, 604–611 (2014).
  178. Prämassing, M., Liebtrau, M., Schill, H. J., Irsen, S. & Linden, S. Interferometric near-field characterization of plasmonic slot waveguides in si ngle- and poly-crystalline gold films. Opt. Express 28, 12998–13007 (2020).
  179. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
  180. Dorfmüller, J. et al. Fabry–Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9, 2372–2377 (2009).
  181. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).
  182. Wang, T., Li, P., Hauer, B., Chigrin, D. N. & Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).
  183. Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 3, 6 84 (2012).
  184. Kim, D.-S. et al. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett. 9, 3619–3625 (2009).
  185. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field opt ical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).
  186. Neuman, T. et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. 9, 637–649 (2015).
  187. Paulite, M. et al. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscop y. J. Am. Chem. Soc. 133, 7376–7383 (2011).
  188. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (201 3). This work demonstrated the capability of scattering-type scanning near-field optical microscopy and nano-FTIR spectroscopy for an alysing the secondary structure of individual protein complexes, membranes and fibrils.
  189. Meyns, M., Primpke, S. & Gerdts, G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. A nal. Methods 11, 5195–5202 (2019).
  190. Wollny, G., Bründermann, E., Arsov, Z., Quaroni, L. & Havenith, M. Nanoscale depth resolution in scanning near-field infrared microscopy. Op t. Express 16, 7453–7459 (2008).
  191. Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980–3982 (2000).
  192. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529 (2014).
  193. Huber, A. J., Kazantsev, D., Keilmann, F., Wittborn, J. & Hillenbrand, R. Simultaneous IR material recognition and conductivity mapping by na noscale near-field microscopy. Adv. Mater. 19, 2209–2212 (2007).
  194. Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO membranes. Nat. Commun. 15, 4743 (2024).
  195. Amarie, S. et al. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J. Nanotechnol. 3, 312–323 (2012).
  196. Dominguez, G. et al. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun. 5, 5445 (2014).
  197. Huber, A., Ocelic, N., Taubner, T. & Hillenbrand, R. Nanoscale resolved infrared probing of crystal structure and of plasmon–phonon coupling. Nano Lett. 6, 774–778 (2006).
  198. Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 3, 606– 609 (2004).
  199. Huber, A. J., Ziegler, A., Köck, T. & Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 4, 153– 157 (2009).
  200. Bensmann, S. et al. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser. Opt. Express 22, 22369–22381 (2 014).
  201. Barnett, J. et al. Phonon-enhanced near-field spectroscopy to extract the local electronic properties of buried 2D electron systems in oxide heter ostructures. Adv. Funct. Mater. 30, 2004767 (2020).
  202. Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater. 28, 1802834 (2018).
  203. Qin, T.-X. et al. Revealing the interaction of charge carrier–phonon coupling by quantification of electronic properties at the SrTiO /TiO hetero interface. Nano Lett. 22, 2755–2761 (2022).
  204. Hauer, B., Engelhardt, A. P. & Taubner, T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Expres s 20, 13173–13188 (2012).\
  205. Vincent, T. et al. snompy: a package for modelling scattering-type scanning near-field optical microscopy. AQ9 Preprint at https://arxiv.org/ab s/2405.20948 (2024).
  206. McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 9 0, 85136 (2014).
  207. Jiang, B. Y., Zhang, L. M., Castro Neto, A. H., Basov, D. N. & Fogler, M. M. Generalized spectral method for near-field optical microscopy. J. Appl. Phys. 119, 054305 (2016).
  208. Chui, S. T., Chen, X., Liu, M., Lin, Z. & Zi, J. Scattering of electromagnetic waves from a cone with conformal mapping: application to scannin g near-field optical microscope. Phys. Rev. B 97, 81406 (2018).
  209. Chen, X. et al. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces — part II. Opt. Express 30, 11 228 (2022).
  210. Ruta, F. L., Sternbach, A. J., Dieng, A. B., McLeod, A. S. & Basov, D. N. Quantitative nanoinfrared spectroscopy of anisotropic van der Waals materials. Nano Lett. 20, 7933–7940 (2020).
    214. Babicheva, V. E., Gamage, S., Stockman, M. I. & Abate, Y. Near-field edge fringes at sharp material boundaries. Opt. Express 25, 23935 (201 7).
  211. Luan, Y., McDermott, L., Hu, F. & Fei, Z. Tip- and plasmon-enhanced infrared nanoscopy for ultrasensitive molecular characterizations. Phys. Rev. Appl. 13, 34020 (2020).
  212. McArdle, P., Lahneman, D. J., Biswas, A., Keilmann, F. & Qazilbash, M. M. Near-field infrared nanospectroscopy of surface phonon–polariton resonances. Phys. Rev. Res. 2, 23272 (2020).
  213. Zhao, Y., Chen, X., Yao, Z., Liu, M. K. & Fogler, M. M. Deep-learning-aided extraction of optical constants in scanning near-field optical micro scopy. J. Appl. Phys. 133, 133105 (2023).
  214. Chen, X. et al. Machine learning for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).
  215. Chen, X., Ren, R. & Liu, M. Validity of machine learning in the quantitative analysis of complex scanning near-field optical microscopy signals using simulated data. Phys. Rev. Appl. 15, 14001 (2021).
  216. Qazilbash, M. M. et al. Mott transition in VO revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007). In this work, scattering-type scanning near-field optical microscopy was used to demonstrate phase separation in correlated electron material syst ems.
  217. Liu, M. et al. Symmetry breaking and geometric confinement in VO : results from a three-dimensional infrared nano-imaging. Appl. Phys. Lett. 104, 121905 (2014).
  218. O’Callahan, B. T. et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO . Nat. Commun. 6, 6849 (2015).
  219. Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 96602 (2013).
  220. Jones, A. C., Berweger, S., Wei, J., Cobden, D. & Raschke, M. B. Nano-optical investigations of the metal−insulator phase behavior of individu al VO microcrystals. Nano Lett. 10, 1574–1581 (2010).
  221. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V O . Nat. Phys. 13, 80–86 (2017).
  222. Lee, W. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol. 15, 941–947 (2020).
  223. Luo, W. et al. High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nat. Commun. 10, 2774 (2019).
  224. Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).
  225. Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope.Rev. Sci. Inst rum. 84, 023701 (2013).
  226. Döring, J. et al. Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 10, 18 074–18079 (2018).
  227. Kim, R. H. J., Park, J. M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).
  228. McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).
  229. Zhou, Y. et al. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO /SrTiO heterostructures. Nat. Commun. 14, 7686 (202 3).
  230. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).
  231. Nishida, J. et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nat. Commun. 13, 1083 (2022).
  232. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014). This work demonstrated ultrafast time-resolved scattering-type scanning near-field optical microscopy with a time resolution below 100 fs.
  233. Sternbach, A. J. et al. Artifact free time resolved near-field spectroscopy. Opt. Express 25, 28589 (2017).
  234. Plankl, M. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photon. 15, 594–600 (2021).
  235. Dönges, S. A. et al. Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO. Nano Lett. 16, 3029–3035 (2016).
  236. Pushkarev, V. et al. Charge transport in single-crystalline GaAs nanobars: impact of band bending revealed by terahertz spectroscopy. Adv. Func t. Mater. 32, 2107403 (2022).
  237. Pizzuto, A. et al. Nonlocal time-resolved terahertz spectroscopy in the near field. ACS Photon. 8, 2904–2911 (2021).
  238. Siday, T. et al. Ultrafast nanoscopy of high-density exciton phases in WSe . Nano Lett. 22, 2561–2568 (2022).
  239. Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton–polariton dynamics in WSe by ultrafast near-field imaging. Sci. Ad v. 5, eaat9618 (2019).
  240. Vitalone, R. A. et al. Nanoscale femtosecond dynamics of mott insulator (Ca Sr ) RuO . Nano Lett. 22, 5689–5697 (2022).
  241. Sternbach, A. J. et al. Nanotextured dynamics of a light-induced phase transition in VO . Nano Lett. 21, 9052–9060 (2021).
  242. Charnukha, A. et al. Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor. Sci. Adv. 5, eaau9956 (2019).
  243. Li, J. et al. Ultrafast optical nanoscopy of carrier dynamics in silicon nanowires. Nano Lett. 23, 1445–1450 (2023).
  244. Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
  245. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).
  246. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).
  247. He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).
  248. Luferau, A. et al. Hot-electron dynamics in a semiconductor nanowire under intense THz excitation. ACS Photon. 11, 3123–3130 (2024).
  249. Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).
  250. Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).
  251. Zhang, J. et al. Nano-resolved current-induced insulator–metal transition in the Mott insulator Ca RuO . Phys. Rev. X 9, 11032 (2019).
  252. Dapolito, M. et al. Infrared nano-imaging of Dirac magnetoexcitons in graphene. Nat. Nanotechnol. 18, 1409–1415 (2023). This work demonstrated scattering-type scanning near-field optical microscopy nano-imaging in a magnetic field up to 7 T.
  253. Blundo, E. et al. Vibrational properties in highly strained hexagonal boron nitride bubbles. Nano Lett. 22, 1525–1533 (2022).
  254. Khatib, O. et al. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano 9, 7968–7975 (2015).
  255. Meireles, L. M. et al. Synchrotron infrared nanospectroscopy on a graphene chip. Lab Chip 19, 3678–3684 (2019).
  256. Zhao, X. et al. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc. Natl Acad. Sci. USA 119, e2200019119 (2022).
  257. Lu, Y.-H. et al. Infrared nanospectroscopy at the graphene–electrolyte interface. Nano Lett. 19, 5388–5393 (2019). This work introduced a suspended graphene liquid cell device that enables in situ nano-FTIR spectroscopy of solid–liquid interfaces.
  258. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022). In this work, nano-Fourier transform infrared spectroscopy was used to show how the local chemistry of an Li/polymer electrolyte interface is modified by Li plating.
  259. Baù, E., Gölz, T., Benoit, M., Tittl, A. & Keilmann, F. Nanoscale mechanical manipulation of ultrathin SiN membranes enabling infrared near-field microscopy of liquid-immersed samples. Small n/a, 2402568 (2024).
  260. O’Callahan, B. T. et al. In liquid infrared scattering scanning near-field optical microscopy for chemical and biological nanoimaging. Nano Lett. 20, 4497–4504 (2020).
  261. Virmani, D. et al. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360 (2021).
  262. Emelianov, N. A. et al. Nanoscale visualization of photodegradation dynamics of MAPbI perovskite films. J. Phys. Chem. Lett. 13, 2744–2749 (2022).
  263. Szostak, R. et al. Nanoscale mapping of chemical composition in organic–inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2023). This paper demonstrated nano-FTIR spectroscopy of the chemical composition in organic–inorganic hybrid perovskite films.
  264. Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 12, 2200–2210 (2019).
  265. Zhao, W. & Johnson, C. M. Perspective — nano infrared microscopy: obtaining chemical information on the nanoscale in corrosion studies. J. E Electrochem. Soc. 166, C3456 (2019).
  266. Hu, X., Zhou, L., Wu, X. & Peng, Y. Review on near-field detection technology in the biomedical field. Adv. Photon. Nexus 2, 044002 (2023).
  267. Wang, H., Xie, Q. & Xu, X. G. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv. Drug Deliv. Rev. 180, 114080 (2022).
  268. Ho, K. et al. Nanoscale subsurface morphologies in block copolymer thin films revealed by combined near-field infrared microscopy and mechanical mapping. ACS Appl. Polym. Mater. 1, 933–938 (2019).
  269. Kotov, N. et al. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohydr. Polym. 302, 12032 0 (2023).
  270. De Los Santos Pereira, A. et al. Conformation in ultrathin polymer brush coatings resolved by infrared nanoscopy. Anal. Chem. 92, 4716–4720 (2020).
  271. Peñas, M. I. et al. Nanostructural organization of thin films prepared by sequential dip-coating deposition of poly(butylene succinate), poly(ε-ca prolactone) and their copolyesters (PBS-ran-PCL). Polymer 226, 123812 (2021).
  272. Eliaz, D. et al. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat. Commun. 13, 7 856 (2022).
  273. Qin, N. et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat . Commun. 7, 13079 (2016).
  274. Kästner, B. et al. Infrared nanospectroscopy of phospholipid and surfactin monolayer domains. ACS Omega 3, 4141–4147 (2018).
  275. Cernescu, A. et al. Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution. Anal. Chem. 90, 101 79–10186 (2018).
  276. Geith, T., Amarie, S., Milz, S., Bamberg, F. & Keilmann, F. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy. J. Biophoton. 7, 418–424 (2014).
  277. Zancajo, V. M. R. et al. FTIR nanospectroscopy shows molecular structures of plant biominerals and cell walls. Anal. Chem. 92, 13694–13701 (2020).
  278. Yesiltas, M. et al. Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5) meteorite: chemical content and molecular variations. Meteorit. Planet. Sci. 55, 2404–2421 (2020).
  279. David, O. et al. Correlating gas permeability and morphology of bio-based polyether-block-amide copolymer membranes by IR nanospectroscopy. J. Membr. Sci. 708, 123001 (2024).
  280. Muller, E. A., Pollard, B., Bechtel, H. A., Van Blerkom, P. & Raschke, M. B. Infrared vibrational nano-crystallography and nano-imaging. Sci. Adv. 2, e1601006 (2016).
  281. Xue, M. et al. Single-vesicle infrared nanoscopy for noninvasive tumor malignancy diagnosis. J. Am. Chem. Soc. 144, 20278–20287 (2022).
  282. Chevigny, R. et al. Nanoscale probing of the supramolecular assembly in a two-component gel by near-field infrared spectroscopy. Chem. Eur. J. 29, e202300155 (2023).
  283. Qin, T.-X. et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light Sci. Appl. 10, 84 (2021).
  284. Schäffer, S. et al. Imaging the terahertz nanoscale conductivity of polycrystalline CsPbBr perovskite thin films. Nano Lett. 23, 2074–2080 (202 3).
  285. Zhang, H.-T. et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 375, 533–539 (2022).
  286. Latypova, A. F. et al. Design principles for organic small molecule hole-transport materials for perovskite solar cells: film morphology matters. ACS Appl. Energy Mater. 5, 5395–5403 (2022).
  287. Komissarova, E. A. et al. Novel benzodithiophene-TTBTBTT copolymers: synthesis and investigation in organic and perovskite solar cells. Sust ain. Energy Fuels 6, 3542–3550 (2022).
  288. Lucas, I. T. et al. IR near-field spectroscopy and imaging of single Li FePO microcrystals. Nano Lett. 15, 1–7 (2015).
  289. Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e019 9112 (2018).
  290. Bakir, G. et al. Orientation matters: polarization-dependent IR spectroscopy of collagen from intact tendon down to the single fibril level. Molecules 25, 4295 (2020).
  291. Greaves, G. E., Kiryushko, D., Auner, H. W., Porter, A. E. & Phillips, C. C. Label-free nanoscale mapping of intracellular organelle chemistry. Commun. Biol. 6, 583 (2023).
  292. Kanevche, K. et al. Infrared nanoscopy and tomography of intracellular structures. Commun. Biol. 4, 1341 (2021).
  293. Freitas, R. O. et al. Nano-infrared imaging of primary neurons. Cells 10, 2559 (2021).
  294. Goikoetxea, M. et al. Cross-sectional chemical nanoimaging of composite polymer nanoparticles by infrared nanospectroscopy. Macromolecules 54, 995–1005 (2021).
  295. Ritchie, E. T. et al. Mapping free-carriers in multijunction silicon nanowires using infrared near-field optical microscopy. Nano Lett. 17, 6591–6 597 (2017).
  296. Rose, M.-A. et al. Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures. Nanoscale Adv. 3, 4145–4155 (2021).
  297. Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).
  298. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31 (2017).
  299. Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light Sci. Appl. 9, 97 (202 0).
  300. Pogna, E. A. A. et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light Sci. Appl. 9, 189 (2020).
  301. Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 10, 219 (2021).
  302. Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).
  303. Dolado, I. et al. Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons. Adv. Mate r. 32, 1906530 (2020).
  304. Zenin, V. A. et al. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett. 17, 7152–7159 (2017).
  305. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).
  306. Herzig Sheinfux, H. et al. Transverse hypercrystals formed by periodically modulated phonon polaritons. ACS Nano 17, 7377–7383 (2023).
  307. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).
  308. Yang, J. et al. Near-field excited archimedean-like tiling patterns in phonon-polaritonic crystals. ACS Nano 15, 9134–9142 (2021).
  309. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO trilayers. Nat. Mater. 22, 867–872 (2023).
  310. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO bilayers. Nature 582, 209–213 (2020).
  311. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).
  312. Wu, C. Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017). In this work, nano-FTI R spectroscopy using synchrotron radiation showed that the peripheries of Pt particles are more active in catalysing oxidation and reduction reactions.
  313. Say, Z. et al. Unraveling molecular fingerprints of catalytic sulfur poisoning at the nanometer scale with near-field infrared spectroscopy. J. Am. Chem. Soc. 144, 8848–8860 (2022).
  314. Johnson, C. M. & Böhmler, M. Nano-FTIR microscopy and spectroscopy studies of atmospheric corrosion with a spatial resolution of 20 nm. Corros. Sci. 108, 60–65 (2016).
  315. Zhao, W., Chang, T., Leygraf, C. & Johnson, C. M. Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corros. Sci. 192, 109777 (2021).
  316. Vogel, C. et al. Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectrosco py. Corros. Sci. 131, 324–329 (2018).
  317. Nepel, T. C. M. et al. In situ infrared micro and nanospectroscopy for discharge chemical composition investigation of non-aqueous lithium–air cells. Adv. Energy Mater. 11, 2101884 (2021).
  318. Yalcin, S. E., Legg, B. A., Yeşilbaş, M., Malvankar, N. S. & Boily, J.-F. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. Sci. Adv. 6, eaaz9708 (2024).
  319. Bai, Y. et al. Protein nanoribbons template enamel mineralization. Proc. Natl Acad. Sci. USA 117, 19201–19208 (2020).
  320. Luibrand, T. et al. Characteristic length scales of the electrically induced insulator-to-metal transition. Phys. Rev. Res. 5, 13108 (2023).
  321. Aghamiri, N. A. et al. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat. Commun. 13, 4511 (2022).
  322. Zhang, S. S. et al. Nano-infrared imaging of metal insulator transition in few-layer 1T-TaS . Nanophotonics 12, 2841–2847 (2023).
  323. Walter, B. et al. Terahertz near-field imaging using batch-fabricated cantilevers with 70 µm long tips. In International Conf. Infrared, Millimeter , and Terahertz Waves, IRMMW-THz, 2019, September 1–2 (2019).
  324. Xia-Hou, Y.-J. et al. Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy. Nano Res. 16, 11326–11333 (202 3).
  325. Xu, S. et al. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron–photon quasiparticles. Sci. A dv. 10, eado5553 (2024).
  326. Siday, T. et al. All-optical subcycle microscopy on atomic length scales. Nature 629, 329–334 (2024).
  327. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013).
  328. Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2023).
  329. Pollard, B. & Raschke, M. B. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains. Beilstein J. Nanotechnol. 7, 605–612 (2016).
  330. Barnett, J. et al. Far-infrared near-field optical imaging and Kelvin probe force microscopy of laser-crystallized and -amorphized phase change material Ge Sb Te. Nano Lett. 21, 9012–9020 (2021).
  331. Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe structures. Nat. Commun. 14, 6200 (2023).
  332. Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).
  333. Palato, S., Schwendke, P., Grosse, N. B. & Stähler, J. Pseudoheterodyne near-field imaging at kHz repetition rates via quadrature-assisted discrete te demodulation. Appl. Phys. Lett. 120, 131601 (2022).
  334. Wang, H., Wang, L. & Xu, X. G. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through ph ase-domain sampling. Nat. Commun. 7, 13212 (2016).
  335. Xu, S. et al. Deep learning analysis of polaritonic wave images. ACS Nano 15, 18182–18191 (2021).
  336. Guo, X., Bertling, K. & Rakić, A. D. Optical constants from scattering-type scanning near-field optical microscope. Appl. Phys. Lett. 118, 0411 03 (2021).
  337. Gamage, S. et al. Nanoscopy of black phosphorus degradation. Adv. Mater. Interfaces 3, 1600121 (2016).
  338. Gamage, S. et al. Infrared nanoimaging of hydrogenated perovskite nickelate memristive devices. ACS Nano 18, 2105–2116 (2024).
  339. Dopilka, A., Gu, Y., Larson, J. M., Zorba, V. & Kostecki, R. Nano-FTIR spectroscopy of the solid electrolyte interphase layer on a thin-film sili con li-ion anode. ACS Appl. Mater. Interfaces 15, 6755–6767 (2023).
  340. Ayache, M., Lux, S. F. & Kostecki, R. IR near-field study of the solid electrolyte interphase on a tin electrode. J. Phys. Chem. Lett. 6, 1126–112 9 (2015).
  341. Ayache, M., Jang, D., Syzdek, J. & Kostecki, R. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode. J. Ele ctrochem. Soc. 162, A7078 (2015).
  342. Shan, Y. et al. Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface. Nat. Catal. 7, 422–431 (2024).
  343. Tesema, T. E., Mcfarland-Porter, R., Zerai, E., Grey, J. & Habteyes, T. G. Hierarchical self-assembly and chemical imaging of nanoscale domain s in polymer blend thin films. J. Phys. Chem. C 126, 7764–7772 (2022).
  344. Meyns, M. et al. Multi-feature round silicon membrane filters enable fractionation and analysis of small micro- and nanoplastics with Raman spectroscopy and nano-FTIR. Anal. Methods 15, 606–617 (2022).
  345. Hartmann, N., Wang, X. & Huber, A. J. Nanoscale THz imaging and spectroscopy at ambient and cryogenic sub 10 K temperatures. In Int. Conf. Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 1–2 (2021).
  346. Kim, R. H. J. et al. Terahertz nano-imaging of electronic strip heterogeneity in a Dirac semimetal. ACS Photon. 8, 1873–1880 (2021).
  347. Jing, R. et al. Phase-resolved terahertz nanoimaging of WTe microcrystals. Phys. Rev. B 107, 155413 (2023).
  348. Jing, R. et al. Terahertz response of monolayer and few-layer WTe at the nanoscale. Nat. Commun. 12, 5594 (2021).
  349. Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 2 3413 (2020).
  350. Stinson, H. T. et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Phys. Rev. B 90, 14502 (2014).
  351. Lu, Q. et al. Surface Josephson plasma waves in a high-temperature superconductor. npj Quantum Mater. 5, 69 (2020).
  352. Wilcken, R. et al. Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction. Proc. Natl Acad. Sci. USA 120, e22208 52120 (2023).
  353. Muller, E. A. et al. Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime. ACS Photon. 5, 3594 (2018).
  354. Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).
  355. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).
  356. Wang, C.-F. et al. Observation of intersubband polaritons in a single nanoantenna using nano-FTIR spectroscopy. Nano Lett. 19, 4620–4626 (20 19).
  357. Casses, L. N. et al. Full quantitative near-field characterization of strongly coupled exciton–plasmon polaritons in thin-layered WSe2 on a mono crystalline gold platelet. ACS Photon. 11, 3593–3601 (2024).
  358. Hirschmann, O., Bhakta, H. H., Kort-Kamp, W. J. M., Jones, A. C. & Xiong, W. Spatially resolved near field spectroscopy of vibrational polaritons at the small N limit. ACS Photon. 11, 2650–2658 (2024).
  359. Wang, Y. et al. Tip-enhanced imaging and control of infrared strong light–matter interaction. Laser Photon. Rev. 18, 2301148 (2024).
  360. Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).
  361. Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 4 9, 3315–3347 (2020).
  362. Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit*. Ann. Rev. Anal. Chem. 8, 101–126 (2015).
  363. Bailo, E. & Deckert, V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008).
  364. Mauser, N. & Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 43, 1248–1262 (2014).
  365. Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117, 6447–6466 (2017).
  366. Sifat, A. A., Jahng, J. & Potma, E. O. Photo-induced force microscopy (PiFM) — principles and implementations. Chem. Soc. Rev. 51, 4208–42 22 (2022).
  367. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photon. 4, 2676–2680 (2017).
  368. Pizzuto, A., Mittleman, D. M. & Klarskov, P. Laser THz emission nanoscopy and THz nanoscopy. Opt. Express 28, 18778–18789 (2020).
  369. Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61–74 (2 022).
  370. Ma, Q., Krishna Kumar, R., Xu, S. Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).
  371. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).
  372. Ni, G. X. et al. Nanoscale infrared spectroscopy and imaging of catalytic reactions in Cu O crystals. ACS Photon. 7, 576–580 (2020).

Abstract

Optical microscopy plays a significant role in research, development, and quality control across a wide range of scientific, technological, and medical fields. However, diffraction limits the spatial resolution of conventional optical instruments to about half the illumination wavelength. A technique that surpasses the diffraction limit in the wide spectral range between visible and terahertz frequencies is scattering-type scanning near-field optical microscopy (s-SNOM). The basis of s-SNOM is an atomic force microscope (AFM), where the AFM-tip is illuminated with light from the visible to THz spectral range. By recording the elastically tip-scattered light while scanning the sample below the tip, s-SNOM yields near-field optical images with a remarkable resolution of 10 nm, simultaneously with the standard AFM topography image. This resolution is independent of the illumination wavelength, rendering s-SNOM a versatile nanoimaging and nanospectroscopy technique for fundamental and applied studies of materials, structures, and phenomena. This review presents an overview of the fundamental principles governing the measurement and interpretation of near-field contrasts and discusses key applications of s-SNOM. We also showcase emerging developments, enabling s-SNOM to operate under various environmental conditions, including cryogenic temperatures, electric and magnetic fields, electrical currents, strain, and the samples being immersed into liquids. All these recent developments broaden the applicability of s-SNOMs for exploring fundamental solid-state and quantum phenomena, biological matter, catalytic reactions, and more.

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: I. Die Construction von Mikroskopen auf Grund der Theo rie. Arch. für mikroskopische Anatomie 9, 413–418 (1873).
  2. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
  3. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Ann. Rev. Biochem. 78, 993–1016 (2009).
  4. Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).
  5. Synge, E. H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Lond. Edinburgh Dublin Phil os. Mag. J. Sci. 6, 356–362 (1928).
  6. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).
  7. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).
  8. Lewis, A., Isaacson, M., Harootunian, A. & Muray, A. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13, 227–231 (1984).
  9. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995).
  10. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).
  11. Bachelot, R., Gleyzes, P. & Boccara, A. C. Apertureless near field optical microscopy by local perturbation of a diffraction spot. Ultramicroscopy 61, 111–116 (1995).
  12. Kawata, S., Inouye, Y. & Sugiura, T. Near-field scanning optical microscope with a laser trapped probe. Jpn. J. Appl. Phys. 33, L1725–L1727 (19 94).
  13. Keilmann, F., Van Der Weide, D. W., Eickelkamp, T., Merz, R. & Stöckle, D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt. Commun. 129, 15–18 (1996).
  14. Wurtz, G., Bachelot, R. & Royer, P. Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy. EPJ A ppl. Phys. 5, 269–275 (1999).
  15. Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (20 00). This paper introduced the point-dipole model of scattering-type scanning near-field optical microscopy.
  16. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000). This paper introduced amplitude-resolved and phase-resolved interferometric detection of the tip-scattered light combined with higher-harmonic signal de-modulation, as well as the expression s-SNOM.
  17. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 7 87 (2004).
  18. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).
  19. Khatib, O., Bechtel, H. A., Martin, M. C., Raschke, M. B. & Carr, G. L. Far infrared synchrotron near-field nanoimaging and nanospectroscopy. ACS Photon. 5, 2773–2779 (2018).
  20. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019). T his work reviews the recent progress of scattering-type scanning near-field optical microscopy (s-SNOM), serving as a good overview of t he s-SNOM technique and their applications in condensed matter research.
  21. Barcelos, I. D. et al. Probing polaritons in 2D materials with synchrotron infrared nanospectroscopy. Adv. Opt. Mater. 8, 1901091 (2020).
  22. Cocker, T. L., Jelic, V., Hillenbrand, R. & Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).
  23. Choi, B., Jeong, G., Shin, H. H. & Kim, Z. H. Molecular vibrational imaging at nanoscale. J. Chem. Phys. 156, 160902 (2022).
  24. Muller, E. A., Pollard, B. & Raschke, M. B. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length sc ales. J. Phys. Chem. Lett. 6, 1275–1284 (2015).
  25. Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Surf. Sci. Rep. 75, 100493 (2020).
  26. Guo, X. et al. Terahertz nanoscopy: advances, challenges, and the road ahead. Appl. Phys. Rev. 11, 021306 (2024).
  27. Novotny, L. From near-field optics to optical antennas. Phys. Today 64, 47–52 (2011).
  28. Novotny, L. & Hecht, B. Principles of Nano-Optics ISBN 9781107005 (Cambridge Univ. Press, 2009).
  29. Labardi, M., Patanè, S. & Allegrini, M. Artifact-free near-field optical imaging by apertureless microscopy. Appl. Phys. Lett. 77, 621–623 (2000).
  30. Mooshammer, F. et al. Quantifying nanoscale electromagnetic fields in near-field microscopy by Fourier demodulation analysis. ACS Photon. 7, 344–351 (2020).
  31. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007). This paper introduced and described the finite-dipole model of scattering-type scanning near-field optical microscopy and provided a corrected version of the point dipole model.
  32. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2 006). This paper introduced scattering-type scanning near-field optical microscopy with pseudo-heterodyne detection combined with high er-harmonic signal demodulation.
  33. Hillenbrand, R., Knoll, B. & Keilmann, F. Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 202, 77–83 (2001).
  34. Gomez, L. et al. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. J. Opt. Soc. Am. B 23, 823 (2006).
  35. Stiegler, J. M. et al. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 138 7 (2010).
  36. Brehm, M., Taubner, T., Hillenbrand, R. & Keilmann, F. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resoluti on. Nano Lett. 6, 1307–1310 (2006).
  37. Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 45404 (2011).
  38. Pollard, B., Muller, E. A., Hinrichs, K. & Raschke, M. B. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupl ing and dynamics. Nat. Commun. 5, 3587 (2014).
  39. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Aca d. Sci. USA 111, 7191–7196 (2014). This work demonstrated nano-FTIR spectroscopy of semiconductor, biomineral and protein nanostruc tures using synchrotron radiation.
  40. Hillenbrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S. & Aizpurua, J. Coherent imaging of nanoscale plasmon patterns with a carbon nanot ube optical probe. Appl. Phys. Lett. 83, 368–370 (2003).
  41. Esteban, R. et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008). This work introduce d s-polarized illumination for minimally perturbed mapping of the near-field distribution in nanoresonators.
  42. Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).
  43. Govyadinov, A. A., Amenabar, I., Huth, F., Scott Carney, P. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectr ic function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).
  44. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973 (2012). This paper demonstrated nano-FTIR spectroscopy of molecular vibrations and their correlation with conventional FTIR absorption spectra.
  45. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159 (2002). This wor k demonstrated polariton-resonant near-field interaction in scattering-type scanning near-field optical microscopy.
  46. Taubner, T., Hillenbrand, R. & Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Ap pl. Phys. Lett. 85, 5064–5066 (2004).
  47. Mester, L., Govyadinov, A. A. & Hillenbrand, R. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanopho tonics 11, 377–390 (2022).
  48. Aizpurua, J., Taubner, T., de Abajo, F. J. G., Brehm, M. & Hillenbrand, R. Substrate-enhanced infrared near-field spectroscopy. Opt. Express 16, 1529–1545 (2008).
  49. Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).
  50. Wirth, K. G. et al. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photon. 8, 41 8–423 (2021).
  51. Kaltenecker, K. J., Gölz, T., Bau, E. & Keilmann, F. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in w ater. Sci. Rep. 11, 21860 (2021). This paper demonstrated infrared scattering-type scanning near-field optical microscopy and nano-FTIR spectroscopy of water-suspended living cells through the 10 nm thick SiN membrane of a liquid cell.
  52. McLeod, A. S. et al. Nano-imaging of strain-tuned stripe textures in a Mott crystal. npj Quant. Mater. 6, 46 (2021).
  53. Malovichko, I., Govyadinov, A., Huth, F. & Diem, M. Method for referencing a near-field measurement with drift and fluctuation correctio n. EP3940393A1 (2022).
  54. Mastel, S., Govyadinov, A. A., de Oliveira, T. V. A. G., Amenabar, I. & Hillenbrand, R. Nanoscale-resolved chemical identification of thin organi c films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl. Phys. Lett. 106, 023113 (2015).
  55. Heberle, J. & Pfitzner, E. Infrared scattering-type scanning near-field optical microscopy of biomembranes in water. J. Phys. Chem. Lett. 11, 818 3–8188 (2020).
  56. Man, T. et al. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commu n. 13, 305 (2022).
  57. Niehues, I. et al. Identification of weak molecular absorption in single-wavelength s-SNOM images. Opt. Express 31, 7012–7022 (2023).
  58. Paul, S. et al. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun . Chem. 6, 163 (2023).
  59. Raschke, M. B. & Lienau, C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83, 508 9–5091 (2003).
  60. Hillenbrand, R. & Keilmann, F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25–27 (2002).
  61. Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372 (2018). 62. Chen, X. et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photon. 7, 687–694 (2020).
  62. Bijeon, J. L., Adam, P. M., Barchiesi, D. & Royer, P. Definition of a simple resolution criterion in an apertureless scanning near-field optical micr oscope (A-SNOM): contribution of the tip vibration and lock-in detection. EPJ Appl. Phys. 26, 45–52 (2004).
  63. Krutokhvostov, R. et al. Enhanced resolution in subsurface near-field optical microscopy. Opt. Express 20, 593–600 (2012).
  64. Walford, J. N. et al. Influence of tip modulation on image formation in scanning near-field optical microscopy. J. Appl. Phys. 89, 5159–5169 (200 1).
  65. Esteban, R., Vogelgesang, R. & Kern, K. Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast. Opt. Express 17, 2518–2529 (2009).
  66. Nishida, J. et al. Sub-tip-radius near-field interactions in nano-FTIR vibrational spectroscopy on single proteins. Nano Lett. 24, 836–843 (2024).
  67. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279 (2019).
  68. Taubner, T., Keilmann, F. & Hillenbrand, R. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Expre ss 13, 8893 (2005).
  69. Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).
  70. Moon, K. et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 15, 549–552 (2015).
  71. Jacob, R. et al. Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. Nano Lett. 12, 4336–4340 (2012).
  72. Raschke, M. B. et al. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. ChemPhys Chem 6, 2197–2203 (2005).
  73. Govyadinov, A. A. et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 8, 6911–6 921 (2014).
  74. Engelhardt, A. P., Hauer, B. & Taubner, T. Visibility of weak contrasts in subsurface scattering near-field microscopy. Ultramicroscopy 126, 40–4 3 (2013).
  75. Mooshammer, F. et al. Nanoscale near-field tomography of surface states on (Bi Sb ) Te . Nano Lett. 18, 7515–7523 (2018).
  76. Sun, J., Schotland, J. C., Hillenbrand, R. & Carney, P. S. Nanoscale optical tomography using volume-scanning near-field microscopy. Appl. Phy s. Lett. 95, 121108 (2009).
  77. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014). This work dem onstrated time-resolved multi-terahertz nanospectroscopy using electro-optic sampling.
  78. Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancemen t in a scanning nanogap. Phys. Rev. Lett. 97, 60801 (2006).
  79. Mattis Hoffmann, J., Hauer, B. & Taubner, T. Antenna-enhanced infrared near-field nanospectroscopy of a polymer. Appl. Phys. Lett. 101, 19310 5 (2012).
  80. von Ribbeck, H.-G. et al. Spectroscopic THz near-field microscope. Opt. Express 16, 3430–3438 (2008).
  81. Siday, T., Hale, L. L., Hermans, R. I. & Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photon. 7, 596–601 (2020).
  82. Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 17, 6526–6533 (2017).
  83. Moon, Y. et al. Reference-free self-calibrating tip-based scattering-type THz near-field microscopy. AIP Adv. 13, 065211 (2023).
  84. Pistore, V. et al. Near-field probes for sensitive detectorless near-field nanoscopy in the 2.0–4.6 THz range. Appl. Phys. Lett. 124, 221105 (2024).
  85. Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).
  86. Deutsch, B., Hillenbrand, R. & Novotny, L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt. Express 16, 494–5 01 (2008).
  87. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).
  88. Berweger, S. et al. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135, 18292–18295 (2013).
  89. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconducto r nanodevices. Nano Lett. 8, 3766–3770 (2008). This work demonstrated terahertz scattering-type scanning near-field optical microscopy w ith a spatial resolution below 100 nm.
  90. Thomas, L. et al. Imaging of THz photonic modes by scattering scanning near-field optical microscopy. ACS Appl. Mater. Interfaces 14, 32608–3 2617 (2022).
  91. Dean, P. et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 108, 091113 (20 16).
  92. Giordano, M. C. et al. Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 26, 18423–18435 (2018). 94. Liewald, C. et al. All-electronic terahertz nanoscopy. Optica 5, 159 (2018).
  93. Kehr, S. C. et al. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100, 256 403 (2008).
  94. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).
  95. Kuschewski, F. et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 108, 113102 (2016).
  96. Hegenbarth, R. et al. High-power femtosecond mid-IR sources for s-SNOM applications. J. Opt. 16, 094003 (2014).
  97. Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).
  98. Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
  99. Karst, J. et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Sci. Adv. 6, eaaz0566 (2020). 102. Beddoe, M. et al. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: a proof-of-principle study. Acta Biomater. 168, 309–322 (2023).
  100. Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi Se . Nat. Commun. 13, 1374 (2022).
  101. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020).
  102. Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi Se and Bi Te Se topological insulators by near-field terahertz nanosc opy. Nat. Commun. 12, 6672 (2021).
  103. Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (202 3).
  104. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO interface. Nano Lett. 11, 4701–4705 (2011).
  105. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).
  106. Yoxall, E., Schnell, M., Mastel, S. & Hillenbrand, R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantu m cascade laser. Opt. Express 23, 13358–13369 (2015).
  107. Barnett, J. et al. Mid-infrared near-field fingerprint spectroscopy of the 2D electron gas in LaAlO3/SrTiO3at low temperatures. Preprint at https://doi.org/10.48550/arXiv.2311.07354 (2023).
  108. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 112 22–11233 (2006).
  109. Amarie, S., Ganz, T. & Keilmann, F. Mid-infrared near-field spectroscopy. Opt. Express 17, 21794–21801 (2009).
  110. Xu, X. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer to ward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012). This paper demonstrated nano-FTIR spectroscopy of molecular monolayers.
  111. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352 (2011).
  112. Németh, G., Bechtel, H. A. & Borondics, F. Origins and consequences of asymmetric nano-FTIR interferograms. Opt. Express 32, 15280 (202 4).
  113. Larson, J. M., Bechtel, H. A. & Kostecki, R. Detection and signal processing for near-field nanoscale Fourier transform infrared spectroscopy. A dv. Funct. Mater. n/a, 2406643 (2024).
  114. Wehmeier, L. et al. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photon. 10, 4329–4339 (2023).
  115. Peragut, F., Brubach, J.-B., Roy, P. & De Wilde, Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. App l. Phys. Lett. 104, 251118 (2014).
  116. Hermann, P. et al. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 2 1, 2913–2919 (2013).
  117. Lahneman, D. J. et al. Broadband near-field infrared spectroscopy with a high temperature plasma light source. Opt. Express 25, 20421–20430 (2017).
  118. Wagner, M. et al. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photon. 5, 1467–1475 (2018).
  119. Santos, T. M. et al. Synchrotron infrared nanospectroscopy in fourth-generation storage rings. J. Synchrotron Radiat. 31, 547–556 (2024).
  120. Amenabar, I. et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commu n. 8, 14402 (2017).
  121. Schnell, M., Goikoetxea, M., Amenabar, I., Carney, P. S. & Hillenbrand, R. Rapid infrared spectroscopic nanoimaging with nano-FTIR holograp hy. ACS Photon. 7, 2878 (2020).
  122. Fu, M. et al. Accelerated nano-optical imaging through sparse sampling. Nano Lett. 24, 2149–2156 (2024).
  123. Johnson, S. C. et al. Infrared nanospectroscopic imaging in the rotating frame. Optica 6, 424–429 (2019).
  124. Labouesse, S., Johnson, S. C., Bechtel, H. A., Raschke, M. B. & Piestun, R. Smart scattering scanning near-field optical microscopy. ACS Photo n. 7, 3346–3352 (2020).
  125. Kästner, B. et al. Compressed sensing FTIR nano-spectroscopy and nano-imaging. Opt. Express 26, 18115–18124 (2018).
  126. Koch, M., Mittleman, D. M., Ornik, J. & Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 3, 48 (2023).
  127. Chen, H.-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).
  128. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (201 8).
  129. Moon, K. et al. Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivit y. Sci. Rep. 9, 16915 (2019).
  130. Aghamiri, N. A. et al. Hyperspectral time-domain terahertz nano-imaging. Opt. Express 27, 24231 (2019).
  131. Tranca, D. E., Stanciu, S. G., Hristu, R., Latterini, L. & Stanciu, G. A. Surface optical characterization at nanoscale using phasor representation of data acquired by scattering scanning near-field optical microscopy. Appl. Surf. Sci. 509, 145347 (2020).
  132. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). In this work, scattering-type scanning ne ar-field optical microscopy was used to visualize the frequency-dependent propagation of graphene plasmons, as well as the tuning of re sonant localized modes by electrical gating.
  133. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82 (2012). In this work, scattering-type scann ing near-field optical microscopy was employed to image propagating graphene plasmons and to visualize how their wavelengths can be tuned by electrical gating.
  134. Shi, Z. et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photon. 9, 515–519 (2015).
  135. Zhou, Y. et al. Tunable low loss 1D surface plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).
  136. Shi, Z. et al. Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2 015).
  137. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). In this wor k, scattering-type scanning near-field optical microscopy was used to image out-of-plane hyperbolic phonon polaritons in van der Waals materials.
  138. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).
  139. Mancini, A. et al. Near-field retrieval of the surface phonon polariton dispersion in free-standing silicon carbide thin films. ACS Photon. 9, 369 6–3704 (2022).
  140. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).
  141. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). In this work, sc attering-type scanning near-field optical microscopy was used to visualize in real space in-plane hyperbolic phonon polaritons in a natur al van der Waals crystal.
  142. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).
  143. Hu, F. et al. Imaging exciton–polariton transport in MoSe waveguides. Nat. Photon. 11, 356–360 (2017).
  144. Hu, D. et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging. Nat. Commun. 8, 1471 (2017).
  145. Walla, F. et al. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with an on-rotationally-symmetric probe tip. Nanophotonics 7, 269–276 (2018).
  146. Kaltenecker, K. J. et al. Mono-crystalline gold platelets: a high-quality platform for surface plasmon polaritons. Nanophotonics 9, 509–522 (202 0).
  147. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).
  148. Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).
  149. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228 (2017).
  150. Hauer, B. et al. Exploiting phonon-resonant near-field interaction for the nanoscale investigation of extended defects. Adv. Funct. Mater. 30, 190 7357 (2020).
  151. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821–825 (2013).
  152. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 11 3, 55502 (2014).
  153. Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).
  154. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
  155. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).
  156. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO from near- and far-field correlative studies. Ad v. Mater. 32, 1908176 (2020).
  157. Lyu, B. et al. Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride. Nano Lett. 19, 1982 (2019).
  158. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).
  159. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).
  160. Yu, S. J. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 16, 302 7–3035 (2022).
  161. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).
  162. Conrads, L., Schüler, L., Wirth, K. G., Wuttig, M. & Taubner, T. Direct programming of confined surface phonon polariton resonators with the p lasmonic phase-change material In SbTe . Nat. Commun. 15, 3472 (2024).
  163. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2 017).
  164. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674 (2015).
  165. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. L ett. 87, 081103 (2005).
  166. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). This work investigated graphene plasmons at cryog enic temperatures down to 60 K.
  167. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).
  168. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).
  169. Barnett, J. et al. Investigation of low-confinement surface phonon polariton launching on SiC and SrTiO using scanning near-field optical micr oscopy. Appl. Phys. Lett. 120, 211107 (2022).
  170. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
  171. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).
  172. Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).
  173. Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).
  174. Zenin, V. A. et al. Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett. 15, 814 8–8154 (2015).
  175. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–13 73 (2014).
  176. Andryieuski, A. et al. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14, 3925–3929 (2014).
  177. Sarriugarte, P., Schnell, M., Chuvilin, A. & Hillenbrand, R. Polarization-resolved near-field characterization of nanoscale infrared modes in tran smission lines fabricated by gallium and helium ion beam milling. ACS Photon. 1, 604–611 (2014).
  178. Prämassing, M., Liebtrau, M., Schill, H. J., Irsen, S. & Linden, S. Interferometric near-field characterization of plasmonic slot waveguides in si ngle- and poly-crystalline gold films. Opt. Express 28, 12998–13007 (2020).
  179. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
  180. Dorfmüller, J. et al. Fabry–Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9, 2372–2377 (2009).
  181. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).
  182. Wang, T., Li, P., Hauer, B., Chigrin, D. N. & Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).
  183. Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 3, 6 84 (2012).
  184. Kim, D.-S. et al. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett. 9, 3619–3625 (2009).
  185. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field opt ical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).
  186. Neuman, T. et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. 9, 637–649 (2015).
  187. Paulite, M. et al. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscop y. J. Am. Chem. Soc. 133, 7376–7383 (2011).
  188. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (201 3). This work demonstrated the capability of scattering-type scanning near-field optical microscopy and nano-FTIR spectroscopy for an alysing the secondary structure of individual protein complexes, membranes and fibrils.
  189. Meyns, M., Primpke, S. & Gerdts, G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. A nal. Methods 11, 5195–5202 (2019).
  190. Wollny, G., Bründermann, E., Arsov, Z., Quaroni, L. & Havenith, M. Nanoscale depth resolution in scanning near-field infrared microscopy. Op t. Express 16, 7453–7459 (2008).
  191. Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980–3982 (2000).
  192. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529 (2014).
  193. Huber, A. J., Kazantsev, D., Keilmann, F., Wittborn, J. & Hillenbrand, R. Simultaneous IR material recognition and conductivity mapping by na noscale near-field microscopy. Adv. Mater. 19, 2209–2212 (2007).
  194. Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO membranes. Nat. Commun. 15, 4743 (2024).
  195. Amarie, S. et al. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J. Nanotechnol. 3, 312–323 (2012).
  196. Dominguez, G. et al. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun. 5, 5445 (2014).
  197. Huber, A., Ocelic, N., Taubner, T. & Hillenbrand, R. Nanoscale resolved infrared probing of crystal structure and of plasmon–phonon coupling. Nano Lett. 6, 774–778 (2006).
  198. Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 3, 606– 609 (2004).
  199. Huber, A. J., Ziegler, A., Köck, T. & Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 4, 153– 157 (2009).
  200. Bensmann, S. et al. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser. Opt. Express 22, 22369–22381 (2 014).
  201. Barnett, J. et al. Phonon-enhanced near-field spectroscopy to extract the local electronic properties of buried 2D electron systems in oxide heter ostructures. Adv. Funct. Mater. 30, 2004767 (2020).
  202. Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater. 28, 1802834 (2018).
  203. Qin, T.-X. et al. Revealing the interaction of charge carrier–phonon coupling by quantification of electronic properties at the SrTiO /TiO hetero interface. Nano Lett. 22, 2755–2761 (2022).
  204. Hauer, B., Engelhardt, A. P. & Taubner, T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Expres s 20, 13173–13188 (2012).\
  205. Vincent, T. et al. snompy: a package for modelling scattering-type scanning near-field optical microscopy. AQ9 Preprint at https://arxiv.org/ab s/2405.20948 (2024).
  206. McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 9 0, 85136 (2014).
  207. Jiang, B. Y., Zhang, L. M., Castro Neto, A. H., Basov, D. N. & Fogler, M. M. Generalized spectral method for near-field optical microscopy. J. Appl. Phys. 119, 054305 (2016).
  208. Chui, S. T., Chen, X., Liu, M., Lin, Z. & Zi, J. Scattering of electromagnetic waves from a cone with conformal mapping: application to scannin g near-field optical microscope. Phys. Rev. B 97, 81406 (2018).
  209. Chen, X. et al. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces — part II. Opt. Express 30, 11 228 (2022).
  210. Ruta, F. L., Sternbach, A. J., Dieng, A. B., McLeod, A. S. & Basov, D. N. Quantitative nanoinfrared spectroscopy of anisotropic van der Waals materials. Nano Lett. 20, 7933–7940 (2020).
    214. Babicheva, V. E., Gamage, S., Stockman, M. I. & Abate, Y. Near-field edge fringes at sharp material boundaries. Opt. Express 25, 23935 (201 7).
  211. Luan, Y., McDermott, L., Hu, F. & Fei, Z. Tip- and plasmon-enhanced infrared nanoscopy for ultrasensitive molecular characterizations. Phys. Rev. Appl. 13, 34020 (2020).
  212. McArdle, P., Lahneman, D. J., Biswas, A., Keilmann, F. & Qazilbash, M. M. Near-field infrared nanospectroscopy of surface phonon–polariton resonances. Phys. Rev. Res. 2, 23272 (2020).
  213. Zhao, Y., Chen, X., Yao, Z., Liu, M. K. & Fogler, M. M. Deep-learning-aided extraction of optical constants in scanning near-field optical micro scopy. J. Appl. Phys. 133, 133105 (2023).
  214. Chen, X. et al. Machine learning for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).
  215. Chen, X., Ren, R. & Liu, M. Validity of machine learning in the quantitative analysis of complex scanning near-field optical microscopy signals using simulated data. Phys. Rev. Appl. 15, 14001 (2021).
  216. Qazilbash, M. M. et al. Mott transition in VO revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007). In this work, scattering-type scanning near-field optical microscopy was used to demonstrate phase separation in correlated electron material syst ems.
  217. Liu, M. et al. Symmetry breaking and geometric confinement in VO : results from a three-dimensional infrared nano-imaging. Appl. Phys. Lett. 104, 121905 (2014).
  218. O’Callahan, B. T. et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO . Nat. Commun. 6, 6849 (2015).
  219. Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 96602 (2013).
  220. Jones, A. C., Berweger, S., Wei, J., Cobden, D. & Raschke, M. B. Nano-optical investigations of the metal−insulator phase behavior of individu al VO microcrystals. Nano Lett. 10, 1574–1581 (2010).
  221. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V O . Nat. Phys. 13, 80–86 (2017).
  222. Lee, W. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol. 15, 941–947 (2020).
  223. Luo, W. et al. High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nat. Commun. 10, 2774 (2019).
  224. Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).
  225. Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope.Rev. Sci. Inst rum. 84, 023701 (2013).
  226. Döring, J. et al. Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 10, 18 074–18079 (2018).
  227. Kim, R. H. J., Park, J. M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).
  228. McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).
  229. Zhou, Y. et al. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO /SrTiO heterostructures. Nat. Commun. 14, 7686 (202 3).
  230. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).
  231. Nishida, J. et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nat. Commun. 13, 1083 (2022).
  232. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014). This work demonstrated ultrafast time-resolved scattering-type scanning near-field optical microscopy with a time resolution below 100 fs.
  233. Sternbach, A. J. et al. Artifact free time resolved near-field spectroscopy. Opt. Express 25, 28589 (2017).
  234. Plankl, M. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photon. 15, 594–600 (2021).
  235. Dönges, S. A. et al. Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO. Nano Lett. 16, 3029–3035 (2016).
  236. Pushkarev, V. et al. Charge transport in single-crystalline GaAs nanobars: impact of band bending revealed by terahertz spectroscopy. Adv. Func t. Mater. 32, 2107403 (2022).
  237. Pizzuto, A. et al. Nonlocal time-resolved terahertz spectroscopy in the near field. ACS Photon. 8, 2904–2911 (2021).
  238. Siday, T. et al. Ultrafast nanoscopy of high-density exciton phases in WSe . Nano Lett. 22, 2561–2568 (2022).
  239. Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton–polariton dynamics in WSe by ultrafast near-field imaging. Sci. Ad v. 5, eaat9618 (2019).
  240. Vitalone, R. A. et al. Nanoscale femtosecond dynamics of mott insulator (Ca Sr ) RuO . Nano Lett. 22, 5689–5697 (2022).
  241. Sternbach, A. J. et al. Nanotextured dynamics of a light-induced phase transition in VO . Nano Lett. 21, 9052–9060 (2021).
  242. Charnukha, A. et al. Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor. Sci. Adv. 5, eaau9956 (2019).
  243. Li, J. et al. Ultrafast optical nanoscopy of carrier dynamics in silicon nanowires. Nano Lett. 23, 1445–1450 (2023).
  244. Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
  245. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).
  246. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).
  247. He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).
  248. Luferau, A. et al. Hot-electron dynamics in a semiconductor nanowire under intense THz excitation. ACS Photon. 11, 3123–3130 (2024).
  249. Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).
  250. Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).
  251. Zhang, J. et al. Nano-resolved current-induced insulator–metal transition in the Mott insulator Ca RuO . Phys. Rev. X 9, 11032 (2019).
  252. Dapolito, M. et al. Infrared nano-imaging of Dirac magnetoexcitons in graphene. Nat. Nanotechnol. 18, 1409–1415 (2023). This work demonstrated scattering-type scanning near-field optical microscopy nano-imaging in a magnetic field up to 7 T.
  253. Blundo, E. et al. Vibrational properties in highly strained hexagonal boron nitride bubbles. Nano Lett. 22, 1525–1533 (2022).
  254. Khatib, O. et al. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano 9, 7968–7975 (2015).
  255. Meireles, L. M. et al. Synchrotron infrared nanospectroscopy on a graphene chip. Lab Chip 19, 3678–3684 (2019).
  256. Zhao, X. et al. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc. Natl Acad. Sci. USA 119, e2200019119 (2022).
  257. Lu, Y.-H. et al. Infrared nanospectroscopy at the graphene–electrolyte interface. Nano Lett. 19, 5388–5393 (2019). This work introduced a suspended graphene liquid cell device that enables in situ nano-FTIR spectroscopy of solid–liquid interfaces.
  258. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022). In this work, nano-Fourier transform infrared spectroscopy was used to show how the local chemistry of an Li/polymer electrolyte interface is modified by Li plating.
  259. Baù, E., Gölz, T., Benoit, M., Tittl, A. & Keilmann, F. Nanoscale mechanical manipulation of ultrathin SiN membranes enabling infrared near-field microscopy of liquid-immersed samples. Small n/a, 2402568 (2024).
  260. O’Callahan, B. T. et al. In liquid infrared scattering scanning near-field optical microscopy for chemical and biological nanoimaging. Nano Lett. 20, 4497–4504 (2020).
  261. Virmani, D. et al. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360 (2021).
  262. Emelianov, N. A. et al. Nanoscale visualization of photodegradation dynamics of MAPbI perovskite films. J. Phys. Chem. Lett. 13, 2744–2749 (2022).
  263. Szostak, R. et al. Nanoscale mapping of chemical composition in organic–inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2023). This paper demonstrated nano-FTIR spectroscopy of the chemical composition in organic–inorganic hybrid perovskite films.
  264. Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 12, 2200–2210 (2019).
  265. Zhao, W. & Johnson, C. M. Perspective — nano infrared microscopy: obtaining chemical information on the nanoscale in corrosion studies. J. E Electrochem. Soc. 166, C3456 (2019).
  266. Hu, X., Zhou, L., Wu, X. & Peng, Y. Review on near-field detection technology in the biomedical field. Adv. Photon. Nexus 2, 044002 (2023).
  267. Wang, H., Xie, Q. & Xu, X. G. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv. Drug Deliv. Rev. 180, 114080 (2022).
  268. Ho, K. et al. Nanoscale subsurface morphologies in block copolymer thin films revealed by combined near-field infrared microscopy and mechanical mapping. ACS Appl. Polym. Mater. 1, 933–938 (2019).
  269. Kotov, N. et al. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohydr. Polym. 302, 12032 0 (2023).
  270. De Los Santos Pereira, A. et al. Conformation in ultrathin polymer brush coatings resolved by infrared nanoscopy. Anal. Chem. 92, 4716–4720 (2020).
  271. Peñas, M. I. et al. Nanostructural organization of thin films prepared by sequential dip-coating deposition of poly(butylene succinate), poly(ε-ca prolactone) and their copolyesters (PBS-ran-PCL). Polymer 226, 123812 (2021).
  272. Eliaz, D. et al. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat. Commun. 13, 7 856 (2022).
  273. Qin, N. et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat . Commun. 7, 13079 (2016).
  274. Kästner, B. et al. Infrared nanospectroscopy of phospholipid and surfactin monolayer domains. ACS Omega 3, 4141–4147 (2018).
  275. Cernescu, A. et al. Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution. Anal. Chem. 90, 101 79–10186 (2018).
  276. Geith, T., Amarie, S., Milz, S., Bamberg, F. & Keilmann, F. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy. J. Biophoton. 7, 418–424 (2014).
  277. Zancajo, V. M. R. et al. FTIR nanospectroscopy shows molecular structures of plant biominerals and cell walls. Anal. Chem. 92, 13694–13701 (2020).
  278. Yesiltas, M. et al. Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5) meteorite: chemical content and molecular variations. Meteorit. Planet. Sci. 55, 2404–2421 (2020).
  279. David, O. et al. Correlating gas permeability and morphology of bio-based polyether-block-amide copolymer membranes by IR nanospectroscopy. J. Membr. Sci. 708, 123001 (2024).
  280. Muller, E. A., Pollard, B., Bechtel, H. A., Van Blerkom, P. & Raschke, M. B. Infrared vibrational nano-crystallography and nano-imaging. Sci. Adv. 2, e1601006 (2016).
  281. Xue, M. et al. Single-vesicle infrared nanoscopy for noninvasive tumor malignancy diagnosis. J. Am. Chem. Soc. 144, 20278–20287 (2022).
  282. Chevigny, R. et al. Nanoscale probing of the supramolecular assembly in a two-component gel by near-field infrared spectroscopy. Chem. Eur. J. 29, e202300155 (2023).
  283. Qin, T.-X. et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light Sci. Appl. 10, 84 (2021).
  284. Schäffer, S. et al. Imaging the terahertz nanoscale conductivity of polycrystalline CsPbBr perovskite thin films. Nano Lett. 23, 2074–2080 (202 3).
  285. Zhang, H.-T. et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 375, 533–539 (2022).
  286. Latypova, A. F. et al. Design principles for organic small molecule hole-transport materials for perovskite solar cells: film morphology matters. ACS Appl. Energy Mater. 5, 5395–5403 (2022).
  287. Komissarova, E. A. et al. Novel benzodithiophene-TTBTBTT copolymers: synthesis and investigation in organic and perovskite solar cells. Sust ain. Energy Fuels 6, 3542–3550 (2022).
  288. Lucas, I. T. et al. IR near-field spectroscopy and imaging of single Li FePO microcrystals. Nano Lett. 15, 1–7 (2015).
  289. Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e019 9112 (2018).
  290. Bakir, G. et al. Orientation matters: polarization-dependent IR spectroscopy of collagen from intact tendon down to the single fibril level. Molecules 25, 4295 (2020).
  291. Greaves, G. E., Kiryushko, D., Auner, H. W., Porter, A. E. & Phillips, C. C. Label-free nanoscale mapping of intracellular organelle chemistry. Commun. Biol. 6, 583 (2023).
  292. Kanevche, K. et al. Infrared nanoscopy and tomography of intracellular structures. Commun. Biol. 4, 1341 (2021).
  293. Freitas, R. O. et al. Nano-infrared imaging of primary neurons. Cells 10, 2559 (2021).
  294. Goikoetxea, M. et al. Cross-sectional chemical nanoimaging of composite polymer nanoparticles by infrared nanospectroscopy. Macromolecules 54, 995–1005 (2021).
  295. Ritchie, E. T. et al. Mapping free-carriers in multijunction silicon nanowires using infrared near-field optical microscopy. Nano Lett. 17, 6591–6 597 (2017).
  296. Rose, M.-A. et al. Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures. Nanoscale Adv. 3, 4145–4155 (2021).
  297. Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).
  298. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31 (2017).
  299. Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light Sci. Appl. 9, 97 (202 0).
  300. Pogna, E. A. A. et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light Sci. Appl. 9, 189 (2020).
  301. Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 10, 219 (2021).
  302. Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).
  303. Dolado, I. et al. Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons. Adv. Mate r. 32, 1906530 (2020).
  304. Zenin, V. A. et al. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett. 17, 7152–7159 (2017).
  305. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).
  306. Herzig Sheinfux, H. et al. Transverse hypercrystals formed by periodically modulated phonon polaritons. ACS Nano 17, 7377–7383 (2023).
  307. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).
  308. Yang, J. et al. Near-field excited archimedean-like tiling patterns in phonon-polaritonic crystals. ACS Nano 15, 9134–9142 (2021).
  309. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO trilayers. Nat. Mater. 22, 867–872 (2023).
  310. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO bilayers. Nature 582, 209–213 (2020).
  311. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).
  312. Wu, C. Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017). In this work, nano-FTI R spectroscopy using synchrotron radiation showed that the peripheries of Pt particles are more active in catalysing oxidation and reduction reactions.
  313. Say, Z. et al. Unraveling molecular fingerprints of catalytic sulfur poisoning at the nanometer scale with near-field infrared spectroscopy. J. Am. Chem. Soc. 144, 8848–8860 (2022).
  314. Johnson, C. M. & Böhmler, M. Nano-FTIR microscopy and spectroscopy studies of atmospheric corrosion with a spatial resolution of 20 nm. Corros. Sci. 108, 60–65 (2016).
  315. Zhao, W., Chang, T., Leygraf, C. & Johnson, C. M. Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corros. Sci. 192, 109777 (2021).
  316. Vogel, C. et al. Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectrosco py. Corros. Sci. 131, 324–329 (2018).
  317. Nepel, T. C. M. et al. In situ infrared micro and nanospectroscopy for discharge chemical composition investigation of non-aqueous lithium–air cells. Adv. Energy Mater. 11, 2101884 (2021).
  318. Yalcin, S. E., Legg, B. A., Yeşilbaş, M., Malvankar, N. S. & Boily, J.-F. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. Sci. Adv. 6, eaaz9708 (2024).
  319. Bai, Y. et al. Protein nanoribbons template enamel mineralization. Proc. Natl Acad. Sci. USA 117, 19201–19208 (2020).
  320. Luibrand, T. et al. Characteristic length scales of the electrically induced insulator-to-metal transition. Phys. Rev. Res. 5, 13108 (2023).
  321. Aghamiri, N. A. et al. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat. Commun. 13, 4511 (2022).
  322. Zhang, S. S. et al. Nano-infrared imaging of metal insulator transition in few-layer 1T-TaS . Nanophotonics 12, 2841–2847 (2023).
  323. Walter, B. et al. Terahertz near-field imaging using batch-fabricated cantilevers with 70 µm long tips. In International Conf. Infrared, Millimeter , and Terahertz Waves, IRMMW-THz, 2019, September 1–2 (2019).
  324. Xia-Hou, Y.-J. et al. Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy. Nano Res. 16, 11326–11333 (202 3).
  325. Xu, S. et al. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron–photon quasiparticles. Sci. A dv. 10, eado5553 (2024).
  326. Siday, T. et al. All-optical subcycle microscopy on atomic length scales. Nature 629, 329–334 (2024).
  327. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013).
  328. Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2023).
  329. Pollard, B. & Raschke, M. B. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains. Beilstein J. Nanotechnol. 7, 605–612 (2016).
  330. Barnett, J. et al. Far-infrared near-field optical imaging and Kelvin probe force microscopy of laser-crystallized and -amorphized phase change material Ge Sb Te. Nano Lett. 21, 9012–9020 (2021).
  331. Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe structures. Nat. Commun. 14, 6200 (2023).
  332. Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).
  333. Palato, S., Schwendke, P., Grosse, N. B. & Stähler, J. Pseudoheterodyne near-field imaging at kHz repetition rates via quadrature-assisted discrete te demodulation. Appl. Phys. Lett. 120, 131601 (2022).
  334. Wang, H., Wang, L. & Xu, X. G. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through ph ase-domain sampling. Nat. Commun. 7, 13212 (2016).
  335. Xu, S. et al. Deep learning analysis of polaritonic wave images. ACS Nano 15, 18182–18191 (2021).
  336. Guo, X., Bertling, K. & Rakić, A. D. Optical constants from scattering-type scanning near-field optical microscope. Appl. Phys. Lett. 118, 0411 03 (2021).
  337. Gamage, S. et al. Nanoscopy of black phosphorus degradation. Adv. Mater. Interfaces 3, 1600121 (2016).
  338. Gamage, S. et al. Infrared nanoimaging of hydrogenated perovskite nickelate memristive devices. ACS Nano 18, 2105–2116 (2024).
  339. Dopilka, A., Gu, Y., Larson, J. M., Zorba, V. & Kostecki, R. Nano-FTIR spectroscopy of the solid electrolyte interphase layer on a thin-film sili con li-ion anode. ACS Appl. Mater. Interfaces 15, 6755–6767 (2023).
  340. Ayache, M., Lux, S. F. & Kostecki, R. IR near-field study of the solid electrolyte interphase on a tin electrode. J. Phys. Chem. Lett. 6, 1126–112 9 (2015).
  341. Ayache, M., Jang, D., Syzdek, J. & Kostecki, R. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode. J. Ele ctrochem. Soc. 162, A7078 (2015).
  342. Shan, Y. et al. Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface. Nat. Catal. 7, 422–431 (2024).
  343. Tesema, T. E., Mcfarland-Porter, R., Zerai, E., Grey, J. & Habteyes, T. G. Hierarchical self-assembly and chemical imaging of nanoscale domain s in polymer blend thin films. J. Phys. Chem. C 126, 7764–7772 (2022).
  344. Meyns, M. et al. Multi-feature round silicon membrane filters enable fractionation and analysis of small micro- and nanoplastics with Raman spectroscopy and nano-FTIR. Anal. Methods 15, 606–617 (2022).
  345. Hartmann, N., Wang, X. & Huber, A. J. Nanoscale THz imaging and spectroscopy at ambient and cryogenic sub 10 K temperatures. In Int. Conf. Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 1–2 (2021).
  346. Kim, R. H. J. et al. Terahertz nano-imaging of electronic strip heterogeneity in a Dirac semimetal. ACS Photon. 8, 1873–1880 (2021).
  347. Jing, R. et al. Phase-resolved terahertz nanoimaging of WTe microcrystals. Phys. Rev. B 107, 155413 (2023).
  348. Jing, R. et al. Terahertz response of monolayer and few-layer WTe at the nanoscale. Nat. Commun. 12, 5594 (2021).
  349. Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 2 3413 (2020).
  350. Stinson, H. T. et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Phys. Rev. B 90, 14502 (2014).
  351. Lu, Q. et al. Surface Josephson plasma waves in a high-temperature superconductor. npj Quantum Mater. 5, 69 (2020).
  352. Wilcken, R. et al. Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction. Proc. Natl Acad. Sci. USA 120, e22208 52120 (2023).
  353. Muller, E. A. et al. Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime. ACS Photon. 5, 3594 (2018).
  354. Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).
  355. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).
  356. Wang, C.-F. et al. Observation of intersubband polaritons in a single nanoantenna using nano-FTIR spectroscopy. Nano Lett. 19, 4620–4626 (20 19).
  357. Casses, L. N. et al. Full quantitative near-field characterization of strongly coupled exciton–plasmon polaritons in thin-layered WSe2 on a mono crystalline gold platelet. ACS Photon. 11, 3593–3601 (2024).
  358. Hirschmann, O., Bhakta, H. H., Kort-Kamp, W. J. M., Jones, A. C. & Xiong, W. Spatially resolved near field spectroscopy of vibrational polaritons at the small N limit. ACS Photon. 11, 2650–2658 (2024).
  359. Wang, Y. et al. Tip-enhanced imaging and control of infrared strong light–matter interaction. Laser Photon. Rev. 18, 2301148 (2024).
  360. Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).
  361. Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 4 9, 3315–3347 (2020).
  362. Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit*. Ann. Rev. Anal. Chem. 8, 101–126 (2015).
  363. Bailo, E. & Deckert, V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008).
  364. Mauser, N. & Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 43, 1248–1262 (2014).
  365. Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117, 6447–6466 (2017).
  366. Sifat, A. A., Jahng, J. & Potma, E. O. Photo-induced force microscopy (PiFM) — principles and implementations. Chem. Soc. Rev. 51, 4208–42 22 (2022).
  367. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photon. 4, 2676–2680 (2017).
  368. Pizzuto, A., Mittleman, D. M. & Klarskov, P. Laser THz emission nanoscopy and THz nanoscopy. Opt. Express 28, 18778–18789 (2020).
  369. Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61–74 (2 022).
  370. Ma, Q., Krishna Kumar, R., Xu, S. Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).
  371. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).
  372. Ni, G. X. et al. Nanoscale infrared spectroscopy and imaging of catalytic reactions in Cu O crystals. ACS Photon. 7, 576–580 (2020).